* B9
This worksheet demonstrates Maple's capabilities in researching the numerical and graphical solution of the variable boundary problem of a thick-walled cylinder of material enclosed in a thin metallic shell .
The relations between stress and strain in linear viscoelastic theory are discussed from the viewpoint of application to problems of stress analysis. This consideration includes some important differences from the estimation of linear viscoelastic laws for the representation of material properties , and the integral operators expressing the creep function or relaxation function can be applied . By using of the differential operator for the relation between stress and strain it is usually most convenient to solve some problems which have the variable boundary .
> | restart; with(DEtools): a(t)=a[0]/sqrt(1-delta*t); eq:=alpha*(1/a(t)^2-1/b^2)*diff(k(t),t)+(beta*(1/a(t)^2-1/b^2)-1/(b^2*c))*k(t)=q(t); eq:=subs(a(t)=a[0]/sqrt(1-delta*t),eq); eq:=subs(q(t)=q[0],eq); nok:=dsolve(eq,k(t)); |
(3.1) |
> | restart; with(DEtools): cof := 1000: eq := alpha*(1/a(t)^2-1/b^2)*(diff(k(t), t))+(beta*(1/a(t)^2-1/b^2)-1/(b^2*c))*k(t) = q(t);eq := subs(a(t) = a[0]/sqrt(1-delta*t), eq); eq := subs(q(t) = q[0], eq); nok := dsolve(eq, k(t)); nok := evalf(subs(c = 1.2, delta = 0.5e-2, alpha = .5, b = 1.5, a[0] = 1, beta = 2, q[0] = 1, nok), 3); u := k(t)/(r*cof); |
(3.2) |
> | k(t):=(int(-4.50*(-1.25+.112e-1*s)^147.*exp(4.00*s),s=0..t)+.22013e14)*exp(-4.00*t)/(-1.25+.112e-1*t)^148.: plot(k(t),t=0..6,labels=[t,"k(t)"],color=blue,style=line,linestyle=4,thickness=2); |
> | plot3d(u, r = 0 .. 1.5, t = 0 .. 6, axes = boxed, labels = ["r", "t(s)", "u(r,t)"], grid = [40, 40]); |
> | epsilon[r] := -k(t)/r^2; plot3d(epsilon[r]/cof, r = 0 .. 1.5, t = 0 .. 6, axes = boxed, labels = ["r", "t(s)", "e[r](r,t)"], grid = [40, 40]); |
> | epsilon[theta] := k(t)/r^2; plot3d(epsilon[theta]/cof, r = 0 .. 1.5, t = 0 .. 6, axes = boxed, labels = ["r", "t(s)", "e[th](r,t)"], grid = [40, 40]); |
> |
> | restart; k(t) = (Int(-4.50*(-1.25+0.112e-1*t)^147.*exp(4.00*t), t)+_C1)*exp(-4.00*t)/(-1.25+0.112e-1*t)^148.; |
(3.3) |
> | k(t):=(int(-4.50*(-1.25+.112e-1*tau)^147.*exp(4.00*tau),tau=0..t)+.22013e14)*exp(-4.00*t)/(-1.25+.112e-1*t)^148.:;k0:=subs(t=0,k(t)); |
(3.4) |
> | edk := k0 = .1; C1 = evalf(solve(edk, _C1), 5); |
(3.5) |
> | u:=k(t)/r/10^3: epsilon[theta]:=k(t)/r^2/10^3: epsilon[rt]:=-k(t)/r^2/10^3: print(" NUMERICAL AND GRAPHICAL SOLUTION "); print(" OUTPUT DATA "); N:=10; M:=6; d:=1; |
> | for m from 1 to N do r:=evalf(1.25*m/N,3); u:=k(t)/r/10^3: epsilon[theta]:=k(t)/r^2/10^3: epsilon[rt]:=-k(t)/r^2/10^3: printf(" t k(t) u(r,t) e[theta] nn"); for j from 0 to M do printf("%10.1f %10.5f %10.5f %10.5f n", d*j, subs(t=d*j,k(t)), subs(t=d*j,u), subs(t=d*j,epsilon[theta])); end do; end do; |
(3.6) |
> | plot3d(u,r=0..1.5,t=0..6,axes=boxed,labels=["r","t(s)","u(r,t)"],grid=[40,40]); cof:=10^3: epsilon[r]:=-k(t)/r^2: plot3d(epsilon[r]/cof,r=0..1.5,t=0..6,axes=boxed,labels=["r","t(s)","e[r](r,t)"],grid=[40,40]); epsilon[theta]:=k(t)/r^2: plot3d(epsilon[theta]/cof,r=0..1.5,t=0..6,axes=boxed,labels=["r","t(s)","e[th](r,t)"],grid=[40,40]); with(plots): N:=3; for j from 0 to N do a[0]:=1/(j+1): plot([a[0]/sqrt(1-delta*t),a[0]/sqrt(1-delta*t),1.25,1.5],t=0..(1.95+j)*3600,color=[blue,blue,black,red],thickness=[1,2,2,2],style=[line,point,point,point],labels=["t(s)","a(t)"],symbol=[diamond,cross],linestyle=4,legend=[`a(t)`,`a(t)`,`b-h = 1.25`,`b = 1.5`]); od; |
> |
> | func_bankinhtrong(50, 5.2, 2, 7, Hh); |
B9.COHONGTRAN-VABOPRO