* B8
Co. H. Tran.
Faculty of Mathematics, University of Natural Sciences - VNU-HCM
Copyright 2007
June 06 2007
NOTE:
This worksheet demonstrates Maple's capabilities in researching the numerical and graphical solution of the relaxation function problem of an orthotropic cylinder .
All rights reserved. Copying or transmitting of this material without the permission of the authors is not allowed .
> | restart; cycrstrecom:=proc(T,Gamma1,c1,P1,Q1,M1,d1) global P,Q,sigmaat1,sigmaat2,sigmabt2,sigmabt1,sigmaatisotropic,sigmabtisotropic ; local To,E,E1,M,d,j,Gamma,Gamma_form,gamma; with(inttrans):with(plottools):with(plots): print(" PARAMETERS DEFINITION : "); print( T=To,gamma=Gamma1,c=c1); print(" REPRESENTATION OF STRESS : "); sigma[theta](at):=(gamma*P*(1+c^(2*gamma))-gamma*Q*2*c^(gamma-1))/(1-c^(2*gamma)); print(sigma[theta](a)=sigma[theta](at)); sigma[theta](bt):=(gamma*P*2*c^(gamma+1)-Q*(1+c^(2*gamma)))/(1-c^(2*gamma)); print(sigma[theta](b)=sigma[theta](bt)); P:=P1;Q:=Q1; To:=T;E[rt]:=(100*(t/To)^(-0.5)+1)*E[e];E[thetat]:=(100*(t/To)^(-0.1)+1)*E[e]; print(E[r]=E[rt]); print(E[theta]=E[thetat]); print(" LAPLACE TRANSFORM OF MODULI : "); E1[rp]:=p*evalf(laplace(E[rt],t,p),3); print(E1[r]=E1[rp]); E1[thetap]:=p*evalf(laplace(E[thetat],t,p),3); print(E1[theta]=E1[thetap]); Gamma_form:=sqrt(E1[theta]/E1[r]); print(" EXPRESSION OF : ",gamma=Gamma_form); Gamma:=evalf(sqrt(E1[thetap]/E1[rp]),5): Gamma:=simplify(Gamma); print(gamma=Gamma); sigma[theta](a):=(Gamma*P1*(1+c1^(2*Gamma))-Gamma*Q1*2*c1^(Gamma-1))/(1-c1^(2*Gamma)); sigma[theta](b):=(Gamma*P1*2*c1^(Gamma+1)-Q1*(1+c1^(2*Gamma)))/(1-c1^(2*Gamma)); print(sigma[Theta](a)=sigma[theta](a));;print(sigma[Theta](b)=sigma[theta](b)); sigma[theta](at):=(gamma*P*(1+c^(2*gamma))-gamma*Q*2*c^(gamma-1))/(1-c^(2*gamma)); print(" SUBSTITUTE ",c=c1 ,p =1/(2*t),gamma=Gamma); sigmaat1:=evalf(subs(c=(1/2),p=(1/(2*t)),gamma=Gamma,P=P1,Q=Q1,sigma[theta](a)),3); sigmaat1:=evalf(simplify(sigmaat1),2); print(sigma[Theta](a)=sigmaat1); sigmaat2:=subs(t=10^(s)*To,sigmaat1): sigmaat2:=evalf(simplify(sigmaat2),2)/P1; sigmabt1:=evalf(subs(c=(1/2),p=(1/(2*t)),gamma=Gamma,P=P1,Q=Q1,sigma[theta](b)),3); sigmabt1:=evalf(simplify(sigmabt1),2); print(sigma[Theta](b)=sigmabt1); sigmabt2:=subs(t=10^(s)*To,sigmabt1): sigmabt2:=evalf(simplify(sigmabt2),2); print(" CHANGE THE PRESENTATION OF TIME INTO LOG(t/To) "); print(sigma[Theta](a)=sigmaat2); print(sigma[Theta](b)=sigmabt2); sigmaatisotropic:=subs(s=0,sigmaat2); sigmaatisotropic:=evalf(simplify(sigmaatisotropic),2); print(sigmaa_isotropic=sigmaatisotropic); sigmabtisotropic:=subs(s=0,sigmabt2): sigmabtisotropic:=evalf(simplify(sigmabtisotropic),2); print(" OUTPUT DATA "); M:=M1; d:=d1; printf(" s=log(t/To) sigma[Theta](a)(s)/P nn"); for j from 0 to M do printf("%10.1f %10.4f n", -d*(10-j), subs(s=-d*(10-j),sigmaat2)); end do; for j from 1 to M do printf("%10.1f %10.4f n", d*j, subs(s=d*j,sigmaat2)); end do; print(" NUMERICAL AND GRAPHICAL SOLUTION "); printf("n%s"," KET THUC BAI TOAN ONG TRU COMPOSITE DAN NHOT TRUC HUONG BANG PHUONG PHAP TRUC TIEP "); plot([sigmaat2,sigmaat2,sigmaatisotropic],s=-10..30,y=0.85..5.2,color=[grey,black,black],style=[line,point,point],thickness=1,symbol=[cross,diamond,cross],linestyle=1,axes=boxed,labels=["logt/To","sigma(a,t)/P"],legend=[`sigma(a,t)/P`,`sigma(a,t)/P`,`Isotropic solution`],title="Numerical solution"); end: |
> | cycrstrecom(1, .83, 1/2, 1, 0, 30, 1); |
KET THUC BAI TOAN ONG TRU COMPOSITE DAN NHOT TRUC HUONG BANG PHUONG PHAP TRUC TIEP
B8.COHONGTRAN-REFUCYORT