* B7
Investigation of the Power Spectral Density of Duffing's Equation By Equivalent Linearization Method
Co. H. Tran.
Faculty of Mathematics, University of Natural Sciences - VNU-HCM
> | restart; |
> | h(z):=(1/((rho^2*z^2+(Gamma-z^2)^2))/(2*Pi)); |
> | eqn:=((rho^2*z^2+(Gamma-z^2)^2))=0; |
> | cdiem:=solve(eqn,z); |
> | z1:=-1/2*I*(2*rho^2-4*Gamma-2*(rho^4-4*rho^2*Gamma)^(1/2))^(1/2); |
> | simplify(residue(h(z),z=z1)); |
> | Ex2 := -1/2*S[0]/Pi/(2*rho^2-4*Gamma-2*(-rho^2*(-rho^2+4*Gamma))^(1/2))^(1/2)/(-rho^2*(-rho^2+4*Gamma))^(1/2); |
> | delta:=3*mu*beta*Ex2; |
> | delta:=subs(rho=2*omega[0]*psi,delta); |
> | deta:=subs(Gamma=omega[0]^2+Delta,delta); |
> | eqndelta:=Delta=deta; |
> | Int((mu*beta/(sigma*sqrt(2*Pi)))*x^4*exp(-x^2/(2*sigma^2)),x=-infinity..infinity); |
> | Exg(x):=int((mu*beta/(sigma*sqrt(2*Pi)))*x^4*exp(-x^2/(2*sigma^2)),x=-infinity..infinity); |
> | eq:=subs(psi=1,mu=0.1,beta=0.2,S[0]=1,Gamma=omega[0]^2+Delta,eqndelta);eq:=subs(omega[0]=0.5,eq); |
> | nodelta:=solve(eq,Delta); |
The graph of Duffing's differential equation ( non-linear random ) : >
> | D(D(x))(t)+2*psi*omega*D(x)(t)+(omega^2)*x(t)+mu*beta*(x(t)^3)=x^3;psi:=1;omega:=0.5;mu:=0.1;beta:=0.2;with(DEtools):with(plottools):with(plots): |
> | DEplot({D(D(x))(t)+2*psi*omega*D(x)(t)+(omega^2)*x(t)+mu*beta*(x(t)^3)=sin(omega*t)},{x(t)},t=0..30,[[x(0)=1,D(x)(0)=1]],stepsize=0.5,title=`Nghiem cua pt Duffing phi tuyen_non-linear random`); |
> | D(D(x))(t)+2*psi*omega*D(x)(t)+((omega^2)+delta)*(x(t))=sin(omega*t);psi:=1;omega:=0.5;delta:=-.3981894531e-1; |
> | DEplot({D(D(x))(t)+2*psi*omega*D(x)(t)+((omega^2)+delta)*(x(t))=sin(omega*t)},{x(t)},t=0..30,[[x(0)=1,D(x)(0)=1]],stepsize=0.05,title=`Nghiem cua pt Duffing tuyen tinh hoa tuong duong_equivalent-linearization`); |
B7.COHONGTRAN-EQUIVALENT-LINEARIZATION